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Photothermal Depth Profiling by Thermal Wave
Backscattering and Genetic Algorithms1

R. Li Voti,2,3 C. Sibilia,2 and M. Bertolotti2

Photothermal depth profiling is usually applied to inhomogeneous materi-
als to localize the optical inhomogeneity or retrieve the thermal effusivity
depth profile by simply monitoring the photothermal signal after the pump
beam excitation. In this paper the different kinds of inverse problems related
to photothermal depth profiling are discussed, and the solutions given by
thermal wave backscattering (TWBS) and genetic algorithms (GAs) are com-
pared. Finally, the different performances and limits of validity on known
linear profiles are compared.

KEY WORDS: inverse problems; nondestructive evaluation; photothermal
techniques; thermal conductivity; thermal effusivity.

1. INTRODUCTION

Nondestructive evaluation of inhomogeneous materials by photothermal
techniques has been the subject of many papers in recent years. Presently
such techniques are widely used to evaluate different kinds of inhomoge-
neity, whether macroscopic subsurface defects in a homogeneous material
[1, 2] or microscopic structural modifications that produce changes in both
thermal and optical parameters [3–7].

Photothermal depth profiling is usually applied to such inhomoge-
neous materials and can be used to localize the optical inhomogeneity [7]
or retrieve the thermal effusivity depth profile [8–11] by simply monitoring
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the surface temperature or any related photothermal signal after the pump
beam pulse absorption.

In this paper we want to discuss two different kinds of inverse prob-
lems: heat source depth profiling (first type) [12] and effusivity depth pro-
filing (second type) [13–16]. We want to show, for the first time, the
equivalence of the two problems, and provide some mathematical tools
to obtain solutions by thermal wave backscattering (TWBS) [9, 10] and
genetic algorithm (GA) [17, 18] approaches. Finally, we compare the
different performances and limits of validity on known linear profiles.

2. LOCALIZATION OF THE HEAT SOURCES

In this section we discuss the possibility to localize the internal heat
sources induced by a pulsed laser beam, by simply looking at the surface
temperature decay of the sample. This is a typical inverse problem of the
first kind described by the following statements: (a) the sample’s thermal
properties are constant; (b) the sample’s optical properties are a function
of depth (i.e., z axis) only; and (c) the pump beam is defocused onto the
sample so as to provide plane illumination in the xy plane, and is a Dirac
pulse in time δ(t). Consequently, if one combines (b) with (c) the induced
heat sources should be z-dependent only, and synchronous with the pump
pulse according to the function q(z)δ(t), where q(z) is the heat deposited
per unit volume. The temperature rise in the material T (z, t) is therefore
given by the following Fourier diffusion equation in the half space z>0:

∂2T

∂z2
− 1

D

∂T

∂t
=−q (z) δ (t)

k
(z>0) (1)

where k and D are the sample’s thermal conductivity and diffusivity,
respectively. The solution of Eq. (1) may be given by the Green function
method. In fact, in the particular case of a heat source q(z) = δ(z − ζ )

placed at z= ζ , the Green function solution of Eq. (1) is given by

G(z, ζ, t)= 1

2e
√

πt

{
exp

[
− (z− ζ )2 /4Dt

]
+ exp

[
− (z+ ζ )2 /4Dt

]}
(2)

where e is the sample’s thermal effusivity. The two terms in Eq. (2) cor-
respond to two heat sources: the real one placed at z = ζ , and its image
at z =−ζ , which should be added to fulfil the adiabatic condition at the
air/sample interface at z=0. For a better understanding of the heat diffu-
sion process, one may plot, for example, the Green function in Eq. (2)
for a heat source placed at ζ =0.4L, where L is a characteristic depth. In
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Fig. 1 the internal temperature distribution versus the normalized depth
z/L is plotted for increasing time (from curves a to f). At an early time
(see curve a), the temperature distribution is localized around the heat
source at ζ/L = 0.4. As the time increases, the heat diffuses in all direc-
tions (see curves b and c). After some time the diffusion reaches the sur-
face, and the surface temperature starts increasing up to a maximum value
at the time t = ζ 2/(2D) (see curve d). For later times the temperature dis-
tribution becomes spatially homogeneous, and starts decreasing with time
as 1/

√
t (see curves e and f), due to the heat diffusion towards larger z.

This phenomenon may be clearly seen even in Fig. 2 where the surface
temperature is plotted as a function of the normalized time Dt/L2 for
different locations of the heat source. The curves from a to f correspond
to a heat source placed deeper and deeper inside the sample (ζ/L=0, 0.2,
0.4, 0.6, 0.8, 1). Note that all curves reach their maximum at a particular
normalized time delay Dt/L2 =0.5 (ζ/L)2, that is, the time required for the
heat to “travel” from the source to the surface. Finally, for later times all
curves merge together, assuming the same typical 1/

√
t cooling behavior.

The case of a distributed heat source profile, with q(z) an arbitrary
function, may be anyway seen as a convolution of Dirac delta functions
as q (z)= ∫∞

0 q (ζ ) δ (z− ζ ) dζ . As a result, since Eq. (1) is a linear differ-
ential equation, the surface temperature may be written as the convolution
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Fig. 1. Normalized temperature versus the normalized
depth z/L for a single Dirac source placed at z/L = 0.4.
Curves refer to different normalized time Dt/L2: (a) 0.001,
(b) 0.005, (c) 0.01, (d) 0.08, (e) 0.1, and (f) 1.
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Fig. 2. Surface temperature cooling versus the normalized
time Dt/L2. Curves refer to a different location of the heat
source: (a) ζ/L=0, (b) ζ/L=0.2, (c) ζ/L=0.4, (d) ζ/L=0.6,
(e) ζ/L=0.8, and (f) ζ/L=1.

of the heat source profile by the Green function in Eq. (2) as follows:

T (z, t) =
∫ ∞

0
q (ζ )G(z, ζ, t) dζ = 1

2e
√

πt

∫ ∞

0
q (ζ )

{
exp

[
− (z− ζ )2 /4Dt

]

+ exp
[
−(z+ ζ )2/4Dt

]}
dζ (3)

from which one easily calculates the surface temperature at z=0;

Ts (t)= 1
e
√

πt

∫ ∞

0
q (ζ ) exp

[
−ζ 2/4Dt

]
dζ (4)

Equation (4) shows how to calculate Ts(t) once q(z) is known (forward
problem). The question now is: is it possible to retrieve q(z) once Ts(t)

is measured by any photothermal technique at some time tk, where k ∈
[1,N ]? This is a typical de-convolution process (inverse problem) which
may be solved by subdividing the sample into a number M < N of lay-
ers of constant thickness ∆ζ . The heat source profile inside the ith layer,
where i ∈ [1,M], is kept constant at the value qi . As a consequence, Eq.
(4) is replaced by the following matrix product:

Ts (tk)=Tk =
M∑
i=1

qi

(∫ ζi+∆ζ/2

ζi−∆ζ/2

exp
[−ζ 2

i /4Dt
]

e
√

πtk
dζ

)
=

M∑
i=1

Ak,iqi (5)
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where the matrix element Ak,i represents the surface temperature at the
time tk generated by a constant heat source placed only in the ith layer
for z∈[ζI −∆ζ/2, ζI +∆ζ/2]. Searching for the properties of the matrix A,
one may plot the vectors Vk =Ak,i as a function of tk, keeping i constant,
so as to obtain practically the same curves reported in Fig. 2. The clear
linear independence among curves in Fig. 2, and consequently among the
vectors Vk, shows that the system in Eq. (5) may be de-convoluted so as to
retrieve the original vector qi , by applying, for example, the singular value
decomposition (SVD) [18]. Such a mathematical tool consists of individu-
ating the singular values and the corresponding singular vectors associated
with the kernel of the Fredholm integral equation in Eqs. (4) and (5). In
Fig. 3 some singular vectors are plotted as a function of the normalized
depth z/L. The curves refer to the singular vectors of order 1(©), 2(�),
3(∇), 5(•), and 10(�) [7]. As one may see, the larger is the order, the big-
ger is the number of oscillations. These vectors constitute a suitable base
in the space of depth profiles, so that any profile may be obtained by a
unique superposition of all the singular vectors. In practice, depending on
the complexity of the profile to be reconstructed, one may achieve a good
accuracy even if one truncates the superposition and uses only the first
N singular vectors (from order 1 to N ) (truncated SVD, TSVD). As an
example, we discuss the case of a hidden heat source placed in the region
0.3� z/L�0.7 (see continuous line in Fig. 4). The corresponding surface
temperature (see continuous line in Fig. 5) shows a peak at the normal-
ized time Dt/L2 ≈ 0.1 which gives a first rough estimate of the location
of the heat source at z/L ∼= 0.45. Of course, in order to reconstruct pre-
cisely the profile, one should fit the surface temperature in the whole tem-
poral range Dt/L2 ∈ [0.001,10] by TSVD. The quality of the fit is very
bad when N =2 singular vectors only are used (see symbols � in Fig. 5),
but strongly improves already for N =5(∇). Further improvements for N =
10(•) or N = 30(�) are practically invisible in Fig. 5. The profiles recon-
structed with the same numbers N =2(�),5(∇), 10(•), and 30(�) are plot-
ted in Fig. 4. It is worth noting that the reconstruction becomes more
accurate as N increases. In fact, the use of high-order singular vectors, as
a result of their high spatial frequency content, generally improves the spa-
tial resolution of the reconstruction.

A different situation happens when the surface temperature is affected
by noise. Unfortunately, in this case the use of high-order singular vectors
usually brings unrealistic oscillations in the reconstruction and should be
avoided. In practice, there are two opposite requirements: from one side,
one wants to use N as large as possible to improve the spatial resolu-
tion of the reconstruction; from the other side, the signal-to-noise ratio
limits the maximum value of N in order to avoid the unrealistic profiles.
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Fig. 3. Heat source profiles singular vectors of the singular
value decomposition: curve (©) N =0; curve (�) N =1; curve
(∇) N =2; curve (•)N =5; and curve (�) N =10.
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Fig. 4. Heat source versus the normalized depth z/L

for a homogeneous heat source placed in the region
0.3� z/L�0.7: (cont. line) original profile, (�) recon-
struction with N = 2 singular vectors; (∇) N = 5; (•) N = 10;
and (�) N =30.
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Fig. 5. Surface temperature versus the normalized time
Dt/L2 for a homogeneous heat source placed in the region
0.3� z/L�0.7: (continuous line) signal to be fitted, (�) use
of N = 2 singular vectors; (∇) N = 5; (•) N = 10; and (�)
N =30.

As an example in the same case studied in Figs. 4 and 5, we simply add
a 10% Gaussian noise to the surface temperature (see continuous line in
Fig. 6). Even in this case, the quality of the fit increases with N as shown
in Fig. 6, but the same does not happen for the quality of reconstruction
as shown in Fig. 7. In practice, an optimum number exists, Nopt =5, which
allows the best possible reconstruction. The way to find Nopt is given by
the L-shape curve for residuals as shown in Fig. 8 where the norm of the

surface temperature error ‖T (t) − Trec(t)‖ =
√∫ |T (t)−Trec(t)|2dt is plot-

ted as a function of the norm of the reconstructed profile ‖qrec(z)‖ =√∫ |qrec(ζ )|2dζ for different values of N [18]. The optimum value Nopt =5
is found at the knee of this L-shape curve. In fact, for N <Nopt, the error
‖T (t)−Trec(t)‖ decreases as N increases and higher-order singular vectors
are used; on the other hand, for N >Nopt, the error becomes of the order
of the noise and cannot decrease with N (horizontal saturation), while the
reconstructed profiles exhibit large unrealistic oscillations as indicated by
the large norm ‖qrec(z)‖. As a conclusion, the quality of the reconstruc-
tion depends dramatically on Nopt and hence on the signal-to-noise ratio.
This is a general result of the information theory which fixes the limit
of the reconstruction independently on the mathematical tool adopted to
solve the inverse problems (TSVD, genetic algorithms, neural networks,
etc.)
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Fig. 6. Surface temperature versus the normalized time
Dt/L2 for the same heat source in Figs. 4 and 5. An addi-
tional 10% Gaussian noise has been added: (continuous line)
noisy signal to be fitted, (�) N = 2 singular vectors; (∇)
N =5; (•) N =7; and (�) N =30.
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Fig. 7. Heat source versus the normalized depth z/L: (cont.
line) original profile, (�) reconstruction with N = 2 singular
vectors; (∇) N =5; and (•) N =7.

3. EFFUSIVITY DEPTH PROFILE

In this section we discuss the possibility to retrieve the internal ther-
mal properties of an inhomogeneous sample by simply looking at the sur-
face temperature cooling dynamics after the pulse heating. Such an inverse
problem is classified of the second kind [12], and may be summarized as
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Fig. 8. L curve for residuals. The temperature error ‖T (t) −
Trec(t)‖=

√∫ |T (t)−Trec(t)|2dt is plotted as a function of the

norm of the reconstructed profile ‖qrec(z)‖ =
√∫ |qrec(ζ )|dζ

for the first 14 singular values and singular vectors. The
numbers underline the number of functions used (N ). The
optimum value Nopt =5 is found at the knee of this L-shape.

follows: (a) the sample thermal properties are functions of depth (i.e., z

axis) only; (b) the sample is optically opaque; (c) as in the first kind prob-
lem, the pump beam is defocused onto the sample so as to provide a plane
illumination in the xy plane, and is a Dirac pulse in time δ(t). Conse-
quently, if one combines (b) with (c), the heat is deposited at the time
t =0, only at the surface z=0, according to the function Qδ(z)δ(t), where
Q is the heat deposited per unit area. The temperature rise in the material
T (z, t) is therefore given by the following Fourier inhomogeneous diffusion
equation in the half space z>0:

∂

∂z

[
k(z)

∂T

∂z

]
−ρc

∂T

∂t
=−Qδ(t)δ(z) (z>0) (6)

where the heat capacity per unit volume (ρc) has been kept constant.
Equation (6) admits exact analytical solutions just for a few classes of pro-
files k(z). As a simple example of thermal inhomogeneity, we discuss the
heat diffusion in a thin homogeneous film grown over an infinite thick sub-
strate. The Laplace transform of the surface temperature is given by

Ts (s)= Q

ef
√

s

(
1+Re−2L

√
s/D

1−Re−2L
√

s/D

)
, (7)



1842 Li Voti, Sibilia, and Bertolotti

where R = ef −es
ef +es

is the thermal reflection coefficient defined as the effusivity
mismatch between the film and the substrate, L is the film thickness, and D

is the film thermal diffusivity (ef and es are the thermal effusivities of the
film and the substrate, respectively). The inverse Laplace transform of Eq.
(7) is eventually given by Ref. 19.

Ts (t)= Q

ef
√

πt

[
1+2

∞∑
n=1

Rn exp

(
−n2

(
L2

Dt

))]
(8)

In Fig. 9 the surface cooling is shown as a function of the normalized
time Dt/L2 for different reflection coefficients R between film and bulk.
Note that when Dt/L2 ≈1 the heat diffusion reaches the rear surface and
brings back the information on the thermal properties of the substrate.
Obviously before that time, a regular diffusion starts in the film along the
z direction (curve a, Fig. 9); since it is too early to “feel” the substrate, all
curves merge together independently on the substrate (at any R). At a later
time the heat reaches the substrate which may be less effusive (0 <R < 1,
curves e and f), or more effusive (−1<R <0, curves b, c, and d) than the
film. Generally the presence of a more (less) effusive substrate may speed
up (slow down) the heat diffusion as well as the surface cooling. In the
case of a very little effusive substrate (air, gases R ≈ 1), the cooling curve
stops decreasing (curve b) due to a relevant “back diffusion” from the sub-
strate to the front surface, which counterbalances the main forward diffu-
sion in the opposite direction. In the different case of a partial thermal
reflection from the substrate (|R| 	=1), the “back diffusion” is weaker than
the forward diffusion; as a result, from the combination of the two heat
fluxes, the surface temperature tends asymptotically to the cooling curve of
the substrate with slope −1/2 (curves b, c, d, e, and f). In practice, in the
log–log plot, there is a simple transition from the straight line Q/

(
ef

√
πt
)

related to an infinite thick film, to the straight line Q/
(
es

√
πt
)

related
to an infinite thick substrate. Therefore, from the whole surface cooling
dynamics, one may retrieve information on the thermal effusivity of the
substrate (i.e., the quantity R), as well as on the position of the substrate
(film thickness L).

For the case of a thermal effusivity depth profile e(z), the ther-
mal conductivity k(z) = e(z)2/(ρc), and diffusivity D(z) = e(z)2/(ρc)2 are
arbitrary functions, and Eq. (6) has no analytical solution. However, for
slowly varying profiles, it is still possible to find an approximate solution
very similar to Eq. (7) in the Laplace domain [10, 11, 20, 21, 25];

Ts (s)= Q

es
√

s

1+R (s)

1−R (s)
(9)
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Fig. 9. Surface temperature versus normalized time Dt/L2

for a film/bulk structure (log–log scale): curves: (a) R = 0, (b)
R =1, (c) R =0.5, (d) R =0.2, (e) R =−0.2, and (f) R =−0.5.

where the reflection coefficient is given by the following integral:

R(s)=
∫ ∞

0

−d ln (e(z))

2dz
exp

[
−2

√
s

∫ z

0

dδ√
D(δ)

]
dz (10)

Equation (10) has a clear physical meaning. The thermal pulse is gen-
erated by a laser at the surface, then diffuses along z, and is partially
reflected back when some effusivity changes occur that act exactly as back-
scattering centers. The total amount of the thermal pulse reflected back is
therefore given by the integral over the whole volume (dz) of all the back-
scattering contributions. Equation (10) is, in fact, a backscattering integral
where the logarithmic term plays the role of the source for the scatter-
ing field

(
qbs (ξ)=− d ln(e(ξ))

2dξ

)
, while the exponential term represents, in the

Laplace domain, the attenuation of a thermal pulse travelling two times
the distance between the surface and the scattering center at the depth z

(one trip to reach the inhomogeneity, plus one trip back to the surface
after reflection). Note that the thermal pulse round trip occurs in an inho-
mogeneous medium, as taken into account in the diffusivity integral inside
the bracket in Eq. (10). A simpler form is found if one refers to the equiv-
alent trip of a pulse travelling in a homogeneous medium with an average
diffusivity Dav from the surface to the equivalent depth ξ(z)=∫ z

0

√
Dav
D(δ)

dδ

and return. In this case, Eq. (10) becomes

R(s)=
∫ ∞

0
qbs (ξ) exp

[
−2ξ

√
s/Dav

]
dξ (11)
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Finally, for the case of weak backscattering when |R(s)|
1, Eq. (9) may
be further simplified and back-transformed in the time domain as follows:

Ts(t)∼= Q

es
√

πt
+2

Q

es
√

πt

∫ ∞

0
qbs (ξ) exp

[
−ξ2/Davt

]
dξ =Th(t)+Tbs(t)

(12)

where Th = Q
(
es

√
πt
)

represents the surface temperature for the case of
a homogeneous sample, while Tbs is the backscattering contribution which
contains fundamental information on the effusivity depth profile. The inte-
grals in Eqs. (4) and (12) are very similar to each other; in fact, they
both belong to the class of Fredholm integral equations of the first kind,
and represent the basis of two different photothermal inverse problems.
In Eq. (4) the surface temperature Ts(t) is the convolution between the
heat source depth profile q(ζ ), and the kernel G1 = exp

⌊−ζ 2/4Dt
⌋

corre-
sponds to the diffusion process from the source at z= ζ to the surface at
z=0; the de-convolution of such an integral represents the solution of the
first type photothermal inverse problem. Similarly in Eq. (12), the excess
of surface temperature Ts(t)− Th(t) is again the convolution between the
scattering depth profile qbs(ζ ) and the kernel G2 = exp

⌊−ζ 2/Davt
⌋

corre-
sponding to the diffusion process from the surface to the scattering center
at z = ζ , and back to the surface; the de-convolution of such an integral
represents the solution of the second type photothermal inverse problem,
and allows reconstruction of the effusivity depth profile. Of course, since
the second kernel is very similar to the first one, the analysis already done
by TSVD for the first type problem may be simply extended to the second
type problem. As an example, we report in Fig. 10 the numerical recon-
struction of the thermal diffusivity of an inhomogeneous sample which
changes linearly the diffusivity from D1 to D2 > D1 within the thickness
L. This linear change is well described by the reflection coefficient R =
e1−e2
e1+e2

=
√

D1−
√

D2√
D1+

√
D2

(in our case R =−0.2). The TSVD has been used to fit

the excess of temperature in Eq. (12) in the time domain. Nevertheless,
the optimum reconstruction, obtained for N = 4, is not fully satisfactory
(see symbols ◦ in Fig. 10). Why? Unfortunately, Eq. (12) is an approxi-
mate formula valid only for weak backscattering |R|
 1, and not in our
case (R =−0.2) where multiple backscattering takes place. A better recon-
struction may be found by fitting directly Eqs. (9) and (10) in the Laplace
domain (for positive s only), or equivalently in the Fourier domain (for
imaginary s =jω). Both methods guarantee a very accurate reconstruction
(� Laplace, ♦ Fourier) [22]. But the differences in the L curves prove that
the Fourier inversion is more stable and less sensitive to the noise. In fact,
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Fig. 10. Reconstruction of a linear diffusivity depth profile:
(continuous line) original profile; (◦) Inversion in time domain
with Nopt = 4; (�) Laplace inversion with Nopt = 5; and (♦)
Fourier inversion with Nopt =10.

in the example, we use Nopt =5 for the Laplace inversion, to be compared
with Nopt =10 for Fourier inversion.

4. GENETIC ALGORITHMS

In this section we want to apply genetic algorithms to solve, for exam-
ple, the second kind problem. A GA is an artificial imitation of what
happens in the natural evolution. Generally, a population of individuals
evolves under the simple mechanism of the natural selection, trying to
adapt itself to the environment [23]. In our example, a population of effu-
sivity (or conductivity) profiles evolves trying to find the best solution of
the inverse problem. How is it possible? In practice, for each profile of
the population, one may calculate the cost function F defined as the tem-
perature error ‖T (t) − Trec(t)‖ which measures how good is the fit with
the experimental data. Depending on the cost function, the typical genetic
mechanism of selection, crossover, and mutation may select and modify the
best profiles from the old population in order to generate a better new
population. The continuous application of these basic mechanisms leads
to the evolution of the population towards the best solution obtained after
some generations [17, 18].

As an example, we report in Fig. 11 the genetic evolution to recon-
struct, from noiseless data, a thermal conductivity profile that changes
linearly from k1 =32 W · m−1· K−1 to k2 =72 W · m−1· K−1 within the thick-
ness L=0.5 mm (symbols ♦). A fixed population of M =50 profiles is used.
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Fig. 11. Thermal conductivity reconstruction by
using the genetic algorithms: (♦) original profile,
(continuous lines) a few of the M =50 conductivity
profiles, after (a) 1 generation, (b) 10 generations,
and (c) 100 generations.
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Figure 11a–c refer to different moments in the evolution, respectively,
after 1, 10, and 100 generations. Note that the population (continuous
lines) move altogether towards the right solution (♦). This collective con-
vergence represents the main feature of GA.

5. DISCUSSION

Finally, we want to compare the different performances and the limits
of validity between the two mathematical tools introduced in this paper:
TSVD and GA. In particular, we apply both methods to reconstruct
thermal diffusivity profiles with different linear slopes from noiseless sim-
ulated data. In Fig. 12 the average reconstruction error for both meth-
ods, TSVD (�) and GA (•), is plotted versus the coefficient R = e1−e2

e1+e2
=√

D1−
√

D2√
D1+

√
D2

which is responsible for the profile slope. As one may see, the
TSVD guarantees the best accuracy in the reconstruction, but only within
the strict limits −0.2 < R < 0.2, corresponding to a slowly varying profile
[24]. In fact, TSVD is applied to an approximate model of thermal wave
back scattering in inhomogeneous materials (TSVD/TWBS). On the con-
trary, GA may be implemented on the exact heat diffusion equation and
therefore may be applied to any arbitrary profile. Unfortunately, several
disadvantages exist also for GA, as, for example, the complexity of the
algorithm, and the slow convergence which may limit the quality of the
reconstruction.
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Fig. 12. Averaged profile error versus reflection coefficient R:
(•) genetic algorithms; (�) truncated singular value decom-
position applied to TWBS theory.



1848 Li Voti, Sibilia, and Bertolotti

REFERENCES

1. P. M. Patel, D. P. Almond, and H. Reiter, Appl. Phys. B 43:9 (1987).
2. R. L. Thomas, J. J. Pouch, W. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig,

J. Appl. Phys. 51:1152 (1980).
3. J. Opsal and A. Rosencwaig, J. Appl. Phys. 53:4240 (1982).
4. U. Seidel, T. T. N. Lan, H. G. Walther, B. Schmitz, J. Geerkens, and G. Goch, Opt. Eng.

36:376 (1997).
5. T. T. N. Lan, U. Seidel, and H. G. Walther, J. Appl. Phys. 77:4739 (1995).
6. S. Malkin and J. E. Ritter, J. Eng. Indust. 111:167 (1989).
7. J. F. Power, Rev. Sci. Instrum. 72:4067 (2002).
8. J. C. Krapez, J. Appl. Phys. 87:4514 (2000).
9. C. Glorieux, R. Li Voti, J. Thoen, M. Bertolotti, and C. Sibilia, J. Appl. Phys. 85:7059

(1999).
10. R. Li Voti, G. L. Liakhou, S. Paoloni, E. Scotto, C. Sibilia, and M. Bertolotti, AIP Conf.

Proc. 463:37 (1999).
11. X. Maldague and P. O. Moore, “Infrared and Thermal Testing,”in Nondestructive Testing

Handbook (American Society for Nondestructive Testing, 2001), Chap. 12, p. 392.
12. J. F. Power, AIP Conf. Proc. 463:1 (1999).
13. C. Glorieux and J. Thoen, J. Appl. Phys. 80:6510 (1996).
14. J. Fivez and J. Thoen, J. Appl. Phys. 79:2225 (1996).
15. A. Mandelis, F. Funak, and M. Munidasa, J. Appl. Phys. 80:5570 (1996).
16. R. Kolarov and T. Velinov, J. Appl. Phys. 83:1878 (1998).
17. R. Li Voti, C. Melchiorri, C. Sibilia, and M. Bertolotti, Anal. Sci. 17:s410 (2001).
18. R. Li Voti, “Inverse Problems by Genetic Algorithms: Application to the Photothermal

Depth Profiling” in Advances in Signal Processing for Non-Destructive Evaluation of Mate-
rials, IV Int. Workshop, X. Maldague, ed. (2002), p. 3.

19. D. L. Balageas, J. C. Krapez, and P. Cielo, J. Appl. Phys. 59:348 (1986).
20. M. Bertolotti, R. Li Voti, G. L. Liakhou, S. Paoloni, and C. Sibilia, AIP Conf. Proc.

463:24 (1999).
21. C. Glorieux, R. Li Voti, J. Thoen, M. Bertolotti, and C. Sibilia. Inverse Probs. 8 (1999)
22. J. C. Krapez and R. Li Voti, Anal. Sci. 17:s417 (2001).
23. J. H. Holland, J. Assoc. Comput. Machinery 3:297 (1962).
24. R. Li Voti, C. Sibilia, and M. Bertolotti, Rev. Sci. Instrum. 74:372 (2003).
25. R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, and M. Bertolotti, J. Optoelectron. Adv.

Mater. 3:779 (2001).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


